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Abstract
The unlimited energy growth (Fermi acceleration) of a classical particle
moving in a billiard with a parameter-dependent boundary oscillating in time
is numerically studied. The shape of the boundary is controlled by a parameter
and the billiard can change from a focusing one to a billiard with dispersing
pieces of the boundary. The complete and simplified versions of the model
are considered in the investigation of the conjecture that Fermi acceleration
will appear in the time-dependent case when the dynamics is chaotic for the
static boundary. Although this conjecture holds for the simplified version,
we have not found evidence of Fermi acceleration for the complete model
with a breathing boundary. When the breathing symmetry is broken, Fermi
acceleration appears in the complete model.

PACS numbers: 05.45.−a, 05.45.Ac, 05.45.Pq

The growth of a particle’s energy due to its interactions with a time-dependent potential was
first noticed by Enrico Fermi [1] in the description of the acceleration mechanism of cosmic
ray particles by magnetic fields [2]. This mechanism can be modeled by a classical light
particle colliding elastically with time varying heavy boundaries (walls). The main point is to
prove the existence of unlimited growth of the energy (Fermi acceleration) in this situation.
Fermi ideas have been applied in different contexts such as atom optics [3], plasma physics
[4], atomic physics [5] and astrophysics [6]. The one-dimensional problem of a particle
moving between a fixed wall and an oscillating one (Fermi–Ulam model) was first examined
by Ulam [7], but no acceleration was found. This result was later explained by the existence of
invariant spanning curves in the phase space that prevents the unlimited growth of the energy
[8–10]. It was soon noticed, as first studied by Hammersley [11] in a model in which the
phase of the moving wall is randomly chosen at the collision time, that stochastic versions
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of the model could present an unlimited growth of the particle average energy. However, the
most interesting question whether Fermi acceleration can result from the dynamics without
any stochastic component, as firstly considered by Ulam [7], remains open and has been
approached both from the numerical (simulation of the dynamics) and the analytical points of
view. Sometimes, simplified versions of the models [9, 12–15] are introduced in order to speed
up the simulations and develop analytical treatments for these nonlinear problems. In these
simplified versions, the displacement of the moving wall is neglected but, in the collisions of
the particle with it, the full time dependence of the momentum exchange between the particle
and wall is taken into account. Recently, the stochastic Fermi–Ulam model was revisited [16]
and it was shown that the simplified version leads to an underestimation of the particle’s Fermi
acceleration.

In two-dimensional billiards, a particle moves freely inside a given region of the plane
and undergoes elastic collisions at the boundary. These models have been widely used in
the investigation of classical and statistical mechanics [17], and in quantum physics [18].
Billiards with moving boundaries (time-dependent billiards) are a natural two-dimensional
generalization of the original Fermi accelerator model. The acceleration in time-dependent
billiards was investigated in different models including both integrable and nonintegrable or
chaotic models. No acceleration was found for integrable billiards such as the breathing
circle [19] or time-dependent ellipses [20]. In fact, as the breathing circle conserves angular
momentum it can be reduced to the one-dimensional model and thus the existence of rotational
invariant curves in the phase space prevents the unlimited growth of the energy. Such invariant
curves also seem to exist in the time × energy phase space of the ellipse. On the other
hand, Fermi acceleration was observed in a Lorentz-type dispersing billiard with both periodic
and stochastic time-dependent boundaries, and in the stadium with periodically oscillating
boundaries [21, 22]. Both models are known to have chaotic behavior in the static case. All
those results enforce the belief that Fermi acceleration should be observed in periodically
time-dependent perturbed chaotic trajectories, where the random behavior in position space
plays the role of the random time-dependent perturbation of the one-dimensional model.
This was formally conjectured by Loskutov et al [22] as ‘A chaotic dynamics for the static
billiard is a sufficient condition for the presence of Fermi acceleration in the billiard with
time-dependent boundary.’ Further works on the stadium with strong chaotic properties and
on the near-rectangle billiard [23], and on the annular billiard [24, 25] were in agreement with
the above conjecture, which is referred to as the LRA conjecture.

In this work we study a billiard with a parameter-dependent boundary. As this parameter
is changed, the shape of the boundary is modified and pieces of the boundary can change
from focusing to dispersing and vice versa. Introducing a time-dependent perturbation of
the parameters, the boundary changes periodically in time. Although our numerical results
for the simplified version are in agreement with the above conjecture, the complete model
with breathing boundary does not have Fermi acceleration. When the breathing symmetry is
broken, the system has unlimited growth of the particle average energy (velocity).

We consider the billiard inside a plane and closed curve � given in polar coordinates by
r(θ) = 1 + ε cos 2θ , for 0 � θ < 2π . Here ε ∈ [0, 1) is a parameter controlling the shape
of the curve, for instance � is a circle if ε = 0. It is easy to verify that � is strictly convex,
i.e. its curvature is positive, if ε < 0.2 implying that we have a focusing billiard. If ε = 0.2,
� has isolated points of null curvature and if ε > 0.2 it has nonconvex (dispersing) pieces
of the boundary. Some of these curves are displayed in figure 1. For ε � 1 the curve has
self-intersections and is no more simple.

As θ parameterizes the curve �, the position of the particle at the nth impact is determined
by θn. Defining the variable αn as the angle of the velocity vector �vn with the tangent vector of
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Figure 1. Curve � for ε = 0.05 , 0.15, 0.2 and 0.4.
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Figure 2. Static phase space for ε = 0.05 (left) and ε = 0.4 (right).

� at θn, the outgoing trajectory is then completely characterized by the pair (θn, αn). It is clear
that once this trajectory is given, the next impact point, and then θn+1, is defined by an implicit
equation. Reflection law gives αn+1. Note that the modulus of the velocity vn is conserved. So
the dynamics of the billiard inside � is described by a two-dimensional map between impacts:
(θn, αn) → (θn+1, αn+1). The corresponding phase space (figure 2) has a rich structure: there
are KAM islands surrounded by a chaotic sea. For a strictly convex boundary (ε < 0.2) there
are also invariant spanning curves, which are destroyed when the boundary has concave pieces
(ε > 0.2). The billiard inside � is nonintegrable if ε > 0.

A time-dependent version of this billiard is given by

r(t, θ) = 1 + η2 cos(t) + ε(1 + η1 cos(t)) cos(2θ), (1)

where all quantities are dimensionless. For each t the equation above defines a curve �(t).
If η2 = η1 we have a breathing billiard because in this case r(t, θ) = [1 + η1 cos(t)](1 +
ε cos(2θ)), with the term between square brackets representing a time-dependent global change
of scale. If η2 �= η1 the billiard changes its shape. The dynamics of a time-dependent billiard
can be fully described by a four-dimensional map (θn, αn, tn, vn) → (θn+1, αn+1, tn+1, vn+1)

[26]. Besides the usual coordinates, one has to take into account time and energy variables,
here represented by the instant tn at which the nth collision occurs and vn the modulus of
the velocity after this collision. Given θn and tn the initial position �rp(tn) = (x, y) =
r(tn, θn)(cos θn, sin θn) of the particle on �(tn) is determined. The unitary tangent vector
of the curve, at the initial position, is denoted by τ̂n = (cos(φn), sin(φn)) and the unitary
inward normal vector by η̂n. Here the slope of the tangent (see figure 3) is given by
tan(φn) = [(dy/dθ)/(dx/dθ)]n. The velocity vector �vn = vn(cos(φn + αn), sin(φn + αn)),
and so the straight movement �rp(t) = �rp(tn) + (t − tn)�vn are then specified by αn and vn. To
find numerically the next impact, the position of the particle is evaluated for each small time
increment until one can decide that the particle has reached the moving boundary again at
time tn+1 and position defined by θn+1, i.e., |�rp(tn+1)| = r(tn+1, θn+1) is satisfied. The boundary
velocity at the (n + 1)th impact point is given by �un+1 = ṙ(tn+1, θn+1)(cos(θn+1), sin(θn+1)),
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Figure 3. Trajectory of the particle (solid lines) and three consecutive collisions with the moving
boundary. For the second impact, it is displayed the polar angle θ , the angle φ between the unitary
tangent vector τ̂ and the x-axis, and the angle α between τ̂ and the particle velocity after the impact.

where ṙ is the time derivate of r in equation (1). In the referential frame moving with this
velocity, i.e., in which the point of impact is at rest and the particle moves with velocity
�vn − �un+1 the collision is elastic, implying that the normal component of the velocity of the
particle is reversed and the tangential one is conserved. So in the original referential frame
we have �vn+1 · τ̂n+1 = �vn · τ̂n+1 and �vn+1 · η̂n+1 = (−�vn + 2�un+1) · η̂n+1. This defines vn+1 and
the new direction of motion αn+1. We will use the denomination geometrical phase space to
indicate the two-dimensional subspace (θ, α) of the four-dimensional phase space. Note that
in the one-dimensional Fermi model, the phase space has dimension 2 and is given by the set
(t, v).

To investigate the presence of Fermi acceleration in this model we analyze the behavior
of the energy E as a function of the number of collisions n. We denote by

E(n) = 1

n + 1

n∑

j=0

Ej , with Ej = v2
j

/
2,

the average along an orbit (Birkoff average). This average may depend on the initial condition.
Averages over an ensemble of initial conditions are denoted by 〈· · ·〉.

Fixing ε = 0.4 and choosing η1 and η2 small enough we guarantee that for each time,
the billiard �(t) has dispersing components and is strongly chaotic (see figure 2 (right)).
In figure 4, it is shown the evolution of E(n) of one initial condition for different values
of η1 and η2. The initial condition corresponds to a chaotic orbit in the geometrical phase
space. For the breathing case (η1 = η2 = 0.1) we can see that the energy seems to reach
a constant value. On the other hand, when η1 �= η2, the billiard changes its shape and the
energy increases. Even a slightly deviation from the breathing case, for example η1 = 0.1
and η2 = 0.11, is sufficient for the energy to increase. This behavior is typical in the sense
that it is independent of the initial conditions (θ0, α0, t0, v0) as far as the trajectory stays in
the chaotic region of the geometrical phase space. In particular, we have not observed any
dependence on the initial velocity. More precisely, for the breathing model, no acceleration
was detected at any initial velocity ranging from 1 to 100 and so we have not observed
the existence of a critical velocity, above which the acceleration is present as in [23]. The
generic behavior of these orbits is confirmed by averaging over 200 initial conditions along
107 collisions. Since the chaotic region spreads over almost all geometrical phase space,
we can evaluate averages by choosing random values for θ0 and α0. In figure 5 we have
plotted 〈E(n)〉 as a function of n. We can see for η1 �= η2 that asymptotically the averages
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Figure 4. Plot of the average energy E along an orbit as a function of n for the complete time-
dependent billiard with ε = 0.4, 105 collisions and the initial condition (θ0 = 0, α = 0.4π,

v0 = 5). Note that the energy seems to reach a constant value (around 32) for the breathing case.
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Figure 5. Log–log plots of 〈E(n)〉 as a function of n for the time-dependent billiard with
ε = 0.4, v0 = 5, 107 collisions and 200 randomly values of θ0 and α0 in the averages. (a) The
complete model; (b) the simplified model.

behave as 〈E(n)〉 ∝ nδ . Using the ordinary least-squares regression method we obtain for
the case η1 = 0.1, η2 = 0.0 that δ = 1.165(5) with very good correlation coefficients. We
found similar values for the other case (η1 = 0.0, η2 = 0.1), namely δ = 1.179(6). 〈En〉
exhibits similar behavior with a slightly different exponent. The average of the modulus of
the velocity 〈v(n)〉, obviously, behaves as 〈v(n)〉 ∝ nβ with β = 0.587(4) and β = 0.591(3)

for the cases (η1 = 0.1, η2 = 0.0) and (η1 = 0.0, η2 = 0.1), respectively. We have also
changed the initial velocity v0 and/or the initial phase of the boundary with no significant
effect on the results. The conclusion also holds if η1 and η2 have one of the values 0.0 and 0.3.
Moreover, we have also introduced a difference of phase and/or frequency in the oscillations
of the boundary; more specifically, equation (1) was replaced by the more general expression
r(t, θ) = 1 + η2 cos(wt + γ2) + ε[1 + η1 cos(t + γ1)] cos(2θ). Still, there is no significant
influence of the new parameters in our conclusions. However, in the simplified version we
have found that the energy increases even in the breathing case. The apparently unlimited
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growth of 〈E(n)〉 can be seen in figure 5(b). The values of the exponent when η1 �= η2 is
approximately equal to that of the complete model and for η1 = η2 = 0.1 (simplified breathing
model) we have obtained δ = 0.800(2), indicating that even if the growth is less accentuated,
it is still present.

When ε = 0.05 the static billiard is everywhere focusing, i.e., its boundary is strictly
convex. The phase space has regions with regular and chaotic dynamics, invariant spanning
curves and large KAM islands (figure 2-left). Such features are characteristic of a near-
integrable billiard. If we choose η1 and η2 to take one of the two values 0.0 or 0.1, the
boundary curve �(t) is strictly convex for all t, i.e. the billiard is everywhere focusing and
large KAM islands associated with a period 2 orbit are always present in the geometric phase-
space, although their size depends on time. Nevertheless, we can choose initial conditions
which seem to stay in the (narrow) chaotic region around these islands. We have analyzed the
behavior of the energy by taking averages upon such orbits and results similar to the strongly
chaotic case described above were obtained. In the breathing case, we have not detected Fermi
acceleration, while if the billiard changes shape, it was observed. In both cases, orbits which
seem to remain trapped in elliptic islands and have a kind of regular dynamics do not show
any acceleration.

This work is focused on the search of Fermi acceleration in deterministic two-dimensional
nonintegrable billiard models, with both regular and chaotic regions. More precisely, we
proposed a time-dependent billiard model, in which we can analyze the effect of the periodic
movement of the boundary on chaotic orbits and test the LRA conjecture. Although we
have made much numerical work, with many different values of the parameters involved, we
choose to present here only two representative cases: a near integrable billiard and a strongly
chaotic one. In one sense, our numerical results give a positive answer to the question of if
it is possible to give unlimited energy, through collisions with a moving wall, to a particle
undergoing chaotic motion. However, one has to observe that the exponent characterizing
the energy average growth 〈E(n)〉 ∝ nδ is larger than the one found for the stochastic model
(δ = 1.0); so the origin of the Fermi acceleration still remains to be understood.

On the other hand, we present evidence that chaotic motion is not a sufficient condition for
the existence of Fermi acceleration, as the mean energy does not increase when the boundary
oscillates in time in such a way that its shape is preserved (breathing case). Moreover, our
work also puts in evidence the qualitative difference between the simplified model, in which
we neglect the boundary displacement, and the complete model, as for the first, average energy
growth in chaotic orbits is observed even in the breathing case. This may indicate that Fermi
acceleration can be very sensitive to the way in which the boundary moves and consequently
that the problem may be even more complex than expected.

At first sight, the result of the breathing case for the complete model contradicts the
results in the literature. However, let us point out that some results [21–24] were in fact
obtained for simplified versions, and the Fermi acceleration found for the complete annular
breathing billiard [25] is due to the fact that the oscillating mode is not a real breathing one,
because the billiard changes its shape during evolution. Unfortunately we have not found any
consistent explanation for the lack of Fermi acceleration in the breathing case. Certainly new
simulations in other breathing models and analytical arguments are welcome to explain this
somehow unexpected result.
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